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a b s t r a c t

In multi-agent systems, agents are inclined to form coalitions to improve individual performance and
perform tasks more efficiently. However, the most existing researches assume that the desired outcome
is a coalition structure that consists of disjoint coalitions where every agent that has joined a coalition
is no longer available to join other coalitions, which leads to waste of resources. In a number of prac-
tical scenarios an agent may have to be involved in executing more than one task simultaneously, and
eywords:
oncurrent tasks
verlapping coalitions
wo-dimensional binary encoding
nvalid encodings
evision algorithm

distributing its resources to several completely different coalitions. To tackle such problems, we propose
the concurrent formation of overlapping coalitions and introduce a two-dimensional binary encoding to
search the coalition space. We mainly focus on the revision algorithm for invalid encodings. Specifically,
by using the proposed revision algorithm, an agent may join in several different coalitions at the same
time without any resource conflict. Moreover, we prove by mathematical induction that the proposed
algorithm will not discard any invalid encoding and can revise any invalid encoding into a valid one.

ent
Finally, a contrast experim

. Introduction

Distributed intelligent control based on multi-agent systems
MAS) is springing up vigorously for cooperative tasks in many open
istributed computing applications. In most cases, these applica-
ions are composed of many software agents with certain functional
apabilities and usually delegate their tasks to those agents to per-
orm.

When an agent encounters tasks that are difficult to accomplish
ith its finite resources, it has to interact and cooperate with other

gents by forming teams where each team is assigned a task and is
alled a coalition.

Coalition formation is a fundamental and important form of
nteraction in MAS. Such coalitions can improve the performance
f individual agents and perform tasks more efficiently. Therefore,

orming effective coalitions is a major research challenge in the
eld of MAS and has received a considerable amount of attention.
or example, coalition formation has been successfully and widely
sed in electric transmission system [6], e-business [2], sensor net-
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f Technology, Tunxi Road No. 193, Hefei 230009, Anhui, China.
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568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.asoc.2010.07.015
is illustrated to demonstrate the proposed algorithm.
© 2010 Elsevier B.V. All rights reserved.

work [3], multi-robot cooperation [18], resource coallocation [14],
and some other combinatorial optimization problems [9].

Generally speaking, however, much of the research within this
area has assumed non-overlapping coalitions where agents are
members of at most one coalition, that is, after a coalition is formed,
every agent that has joined that coalition is no longer available to
join other coalitions, even if it has great capabilities. Therefore,
it may be inevitable that quite a few resources of agents will be
wasted in MAS.

In fact, in a number of practical scenarios an agent may have
to be involved in executing more than one task simultaneously,
and distributing its resources and capabilities to several completely
different coalitions. Against this background, this paper is absorbed
in concurrent formation of overlapping coalitions. We allow that
a coalition may undertake several different tasks and each agent
may be a member of more than one coalition at the same time.
Obviously, this overlapping property can improve the utilization
of agents’ resources and increase the efficiency of task execution.
To achieve the goal, we mainly focus on the revision algorithm for

invalid encodings based on a two-dimensional binary encoding and
advance the state of the art in the following ways:

• We address the problem of coalition formation in multi-task envi-
ronments where task execution is concurrent.

dx.doi.org/10.1016/j.asoc.2010.07.015
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:zgf@hfut.edu.cn
dx.doi.org/10.1016/j.asoc.2010.07.015
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We develop a novel revision algorithm to solve resource conflicts
when several different coalitions compete against each other for
the same agents with finite resources at the same time.
Compared to previous work, the proposed revision algorithm
will not discard any invalid encoding and can revise any invalid
encoding into a valid one.
The proposed revision algorithm can be applied in any evolution-
ary computing algorithm with binary encoding, such as genetic
algorithm [7], binary differential evolution [8], discrete particle
swarm optimization [5,11], and so on.

The remainder of this paper is organized as follows. Section 2
ives a brief description of overlapping coalitions model. In Section
, we discuss related work. Section 4 introduces a two-dimensional
inary encoding for concurrent formation of overlapping coalitions.

n Section 5, we present an overview of the only other algorithm
vailable in the literature for revising invalid encodings due to Lin
nd Hu [10]. Section 6 shows how the improved algorithm can be
sed to revise invalid encodings. In Section 7, we analyze the revi-
ion algorithm by mathematical induction, and in Section 8, we
valuate its performance by contrast experiments. Finally, Section
concludes and presents future work.

. Overlapping coalitions model

Consider a set of n bounded-capabilities agents, A = {a1, a2, . . .,
n}, which have to cooperate to execute m tasks, T = {t1, t2, . . ., tm},
n environments where task execution is concurrent.

efinition 1. Task: Each tk ∈ T has a vector of required r-
imensional capabilities, Dk = [dk

1, dk
2, . . . , dk

r ], dk
j
≥ 0, k = 1, 2, . . .,

, j = 1, 2, . . ., r, r ∈N.

efinition 2. Agent: Each ai ∈A has an original vector of real
on-negative r-dimensional capabilities, Bi = [bi

1, bi
2, . . . , bi

r], bi
j
≥

, i = 1, 2, . . ., n, where each capability is a property of an agent
hat quantifies its ability to perform a specific action. Moreover,
ach ai ∈A has a vector of real workload for every tk ∈ T, Wki =
wki

1 , wki
2 , . . . , wki

r ], 0 ≤ wki
j
≤ bi

j
, which is a real contribution of ai

or executing tk.

efinition 3. Overlapping coalitions: A coalition Ck, Ck⊆A and
k /= ∅, with responsibility for task tk, is a set of member agents. Ck
as a vector of r-dimensional capabilities, BCk

= [bCk
1 , bCk

2 , . . . , bCkr ],
hich is the sum of the capabilities that the coalition members con-

ribute to this specific coalition. Note that in the case of overlapping
oalitions this sum is not the sum of all of the original capabilities
f the members, because the agents may be members of more than
ne coalition, and can contribute part of their capabilities to one
oalition and part of them to another. Thus, here BCk

satisfies that

or each j = 1, 2, . . ., r, bCk
j
=

∑
ai ∈Ck

wki
j

. Since BCk
is the sum of real

ontribution of every agent in Ck, it is easily known that in the case

f overlapping coalitions, BCk
=

∑
ai ∈Ck

Wk = Dk.

Given definitions above, a coalition Ck can perform its task tk
nly if the vector of capabilities necessary for its fulfillment Dk
atisfies

Ck
j ≥ dk

j , j = 1, 2, . . . , r. (1)
In addition, the value of coalition Ck with responsibility for tk is
ssigned by a characteristic function V(Ck)≥0 which is just the gain
istributed among agents in coalition Ck [21].

(Ck) = ˚(tk)−�(Ck)−˘(Ck). (2)
uting 11 (2011) 2164–2172 2165

where ˚(tk) is the guerdon paid for finishing tk and usu-
ally is a given constant number; �(Ck) is the total cost of all

members’ contribution, namely, �(Ck) =
∑

ai ∈Ck

∑
j

wki
j

; ˘(Ck) is

the total cost of communication between members. Note that
the communication cost between ai1 and ai2 is �i1i2 , which
is a given constant number, satisfying �i1i1 = 0, �i1i2 = �i2i1 , if
Ck = {ai1 , ai2 , . . . , ain−1

, ain }, ˘(Ck) = (�i1i2 + �i1i3 + · · · + �i1in−1
+

�i1in )+ (�i2i3 + �i2i4 + · · · + �i2in−1
+ �i2in )+ · · · + (�in−1in ).

Concurrent formation of overlapping coalitions is just generat-
ing m coalitions, C1, C2, . . ., Cm, simultaneously according to task t1,
t2, . . ., tm under the condition∑
ai ∈A

bi
j ≥

∑
tk ∈ T

dk
j , j = 1, 2, . . . , r. (3)

The object is to maximize the payoff of the whole system

VMAS =
m∑

k=1

V(Ck). (4)

3. Related work

To date, much of the existing research on coalition formation
has focused on disjoint coalitions, where it is usually assumed that
every agent that has joined a coalition is no longer available to
join other coalitions. In this context, many solutions [1,4,12,17,20]
have been proposed to find the optimal coalitions in the whole
set of possible coalition structures, which is computationally com-
plex due to the size of the set which is exponential in the number
of agents. So Sen and Dutta [13] adopt the genetic algorithm
and use one-dimensional integral encoding to identify the opti-
mal coalition structure. In addition, Yang and Luo [21] improve on
Sen and Dutta’s algorithm and design a two-dimensional binary
chromosome encoding and corresponding crossover and muta-
tion operators to search the coalition structure space. However,
all of them suffer from an important drawback that each agent can
exactly take part in only a coalition, producing a big waste of capa-
bilities and limiting the scope of their applications in real-world
scenarios. In fact, an agent may be involved in executing more
than one task, and distributing its resources among several (not
necessarily disjoint) coalitions.

To model this domain, Shehory and Kraus [15,16] firstly intro-
duce the notion of overlapping coalitions in their seminal work on
coalition formation for task allocation and develop greedy algo-
rithms for finding a solution to the overlapping coalitions problem
that exhibits logarithmic bound. But no bound can be guaranteed
from the optimal solution that could have been found by searching
all possible coalitions, and their algorithm usually bears with high
communication cost, and moreover, they only consider a specific
block-world scenario where task execution is serial.

Then, Dang et al. [3] develop a polynomial algorithm for overlap-
ping coalitions to track targets of interest in multi-sensor networks,
which can typically generates solutions much closer to the opti-
mal than the theoretical bound. But their deterministic search
algorithm depends on a complete information environment and
thus is at its wit’s end when there is a mass of targets and sen-
sors.

Since the size of the space is exponential in the number of agents,
Zhang et al. [22] adopt discrete particle swarm optimization and

design a two-dimensional binary encoding to search overlapping
coalitions. But their algorithm doesn’t do well in solving resource
conflicts over the usage of joint resources and produces many
invalid encodings, especially when the sum of all agents’ capabili-
ties is much closer to the sum of all tasks’ required capabilities.
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Fig. 1. Two-dimensional binary encoding.

Thus, Lin and Hu [10] propose a revision algorithm for invalid
ncodings to improve on Zhang et al.’s work. In their algorithm, the
esidual capabilities of all valid coalitions (which can perform their
orresponding tasks) are transferred to the first agent, a1, and dele-
ate a1 to join and help other invalid coalitions. But their algorithm
lso suffers from a number of drawbacks which are directly rele-
ant to the work described in this paper, and an overview of their
lgorithm is present in Section 5.

To address these shortcomings, our research will do a thor-
ugh literature review of existing algorithms, and evaluate them
oth theoretically and empirically. Based on our findings, we will
evelop a more efficient algorithm for concurrent formation of
verlapping coalitions. Like Lin and Hu’s algorithm, ours mainly
ocuses on how to revise an invalid encoding into a valid one with-
ut any resource conflict. Therefore, when it comes to evaluating
erformance, we compare the proposed algorithm with Lin and
u’s.

. Two-dimensional binary encoding

Intuitively, parallel formation of overlapping coalitions is just
electing a portion of members from n agents to form m coalitions to
xecute m tasks, which is similar to a two-dimensional combinato-
ial optimization problem. While two-dimensional binary encoding
ot only is simple, easy to comprehend, but also fundamentally
ts well with the two-dimensional characteristic of coalition for-
ation problem, which establishes a good foundation for problem

olving and provides an extremely broad space for designing algo-
ithms with excellent performances [21]. Therefore, in this paper
e devote ourselves to this encoding mode.

Fig. 1 shows a 0–1 binary matrix of m×n, representing a two-
imensional binary encoding. Each row represents a task and each
olumn represents an agent. The element at the intersection of the
th row and the i th column is defined as �ki. If �ki = 1, agent ai
ill take part in coalition Ck with responsibility for task tk. If �ki = 0,

gent ai will not join and cooperate to perform tk. Since overlapping
oalitions allow that an agent may join several different coalitions
t the same time, a column may contain more than a bit “1” in an
ncoding.

. Lin and Hu’s algorithm

After an encoding is generated randomly, we may have to be
aced with two tough problems. On the one hand, see Fig. 1, if in

he k th row, ∃j∈ {1, 2, . . ., r}1,
∑

bi
j

< dk
j
, that is bCk

j
< dk

j
, coali-
i∧�ki=1

ion Ck cannot perform task tk, here Ck is an infeasible coalition, and
hus this encoding is invalid. On the other hand, column i may con-
ain more than a bit “1”, that is several coalitions compete against
ach other for ai simultaneously, but if ai does not have enough
uting 11 (2011) 2164–2172

capabilities and can not satisfy these coalitions’ need at the same
time, resource conflicts may take place, and thus this encoding is
also invalid.

In fact, as long as either of problems shown above takes place,
this encoding is just invalid, which consumedly debases the avail-
ability of encodings. Therefore, Lin and Hu [10] propose a revision
algorithm for invalid encodings. An algorithmic description of their
work is listed in Fig. 2.

Their main idea is transferring residual capabilities of all valid
coalitions to a1 and delegating a1 to help and solve other invalid
coalitions. But from a more technical point of view, their algorithm
suffers from a number of drawbacks.

In Step1, discarding an encoding by mere situation that row
1 is invalid, is extremely arbitrary and blind, because it is abso-
lutely possible that residual capabilities of other unchecked rows
can satisfy C1’s need.

In Step3, a column i contains at most a bit “1”, thus ai can only
join at most a coalition, which is too rigorously to make agents join
coalitions freely and vigorously. More figuratively speaking, this
situation practises egalitarianism, with every agent “eating from
the same big pot”, and consumedly decrease the efficiency of task
execution and the income of the whole system.

In Step5, if BCk
≥ Dk, Ck is valid already and it is not necessary for

a1 to join Ck, thus “�k1←1” should be eliminated. Otherwise, a1
will bring extra cost to Ck and thus decrease Ck’s income. Moreover,
discarding an encoding by mere situation that none of invalid coali-
tions can perform its task after a1 joins it, is also very blind, because
other unchecked valid coalitions with great residual capabilities
may be competent for solving those invalid coalitions.

Particularly, a1 represents a feasible coalition in deed, so it is
clear that a valid coalition may have participated in several tasks,
but it is not clear that whether every member in this coalition has
really taken on tasks or not, and how much workload every member
should perform at least for each task. Therefore, their algorithm can
not tell the system which agent join which task in deed, and thus
can not provide a specific and significant reference for practical
control tasks in MAS.

The underlying cause for those drawbacks cited above is that
Lin and Hu solve the problem only with a view to agents and coali-
tions, but do not consider the problem from the encoding itself,
and thus their algorithm can not primely carry forward the mer-
its of two-dimensional binary encoding. Therefore, in the improved
algorithm, we devote ourselves to research on this encoding model,
and if an encoding is invalid, we will make great efforts to revise it
into a valid one without any resource conflict, instead of discarding
it for any reason.

6. The improved algorithm

Definition 4. Two-value function check(i) denotes whether every
column i has been checked or not. If column i has been checked
previously, check(i) = 1. Otherwise, check(i) = 0.

Definition 5. If �ki = 1 and check(i) = 0, we need to calculate the
workload, Lki = [lki

1 , lki
2 , . . . , lki

r ], that ai should perform at least for
tk according to

lki
j ← dk

j −
∑

ai∗ ∈Ck∧i∗ /= i

[(1− check(i∗))× bi∗
j + check(i∗)×wki∗

j ] (5)

{
lki, lki > 0
lki
j ← 0, lki

j
≤ 0

(6)

where unchecked columns should contribute Bi and checked
columns should contribute Wki.
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If Lki = 0, ai is dispensable for Ck, namely, Ck− {ai} can still per-
orm tk, set �ki←0 and thus let ai drop out of Ck to decrease Ck’s cost
nd increase its income. Otherwise, Lki > 0, and here ai is absolutely
ecessary for Ck.

Given this, we can now express the improved algorithm as fol-
ows:

Step1. (Row Checking) For every k = 1, 2, . . ., m, if ∃j∈ {1, 2, . . ., r},
bCk

j
< dk

j
, select randomly a column i∗ in row k, satisfying �ki∗ = 0

and bi∗
j

> 0, set �ki∗ ← 1, Ck ← Ck + {ai∗ }, repeat this step until Ck

is feasible.
Step2. (Initialization) For every i = 1, 2, . . ., n, set check(i)←0. For
every k = 1, 2, . . ., m and for every i = 1, 2, . . ., n, set Wki←0 and
Lki←0.
Step3. (Column Checking) If for each i = 1, 2, . . ., n, check(i) = 1, end
the algorithm. Otherwise, select randomly an unchecked column
i.
Step4. For every k = 1, 2, . . ., m, if �ki = 1, calculate each Lki accord-
ing to Eqs. (5) and (6), where if Lki = 0, ai is needless for Ck, set
�ki←0, Ck ← Ck −

{
ai

}
, otherwise, ai is necessary for Ck.

Step5. If column i has no any bit “1”, set check(i)←1, goto Step3.

Step6. If
∑

k∧�ki=1

Lki ≤ Bi, ai has great capabilities and can satisfy

several coalitions at the same time. Hence for every k = 1, 2, . . .,
m, if �ki = 1, set Wki←Lki.

Step7. If
∑

k∧�ki=1

Lki > Bi, ai has no enough capabilities and possi-

ble resource conflicts take place, then continue according to the
following aspects:

– * Step7.1. Select randomly a row k∗ with �k∗i = 1 at column
i, set �k∗i ← 0, Ck∗ ← Ck∗ − {ai}, Lk∗i ← 0, repeat this step until∑
k∧�ki=1

Lki ≤ Bi.

– * Step7.2. For the rest each bit “1” with �ki = 1 at column

i, set Wki←Lki. Update ai’s residual capabilities, set Bi ← Bi −∑
k∧�ki=1

Wki and check(i)←1.

– * Step7.3. However, note that Ck∗ is infeasible after Ck∗ ←
Ck∗ −

{
ai

}
. Therefore, all invalid rows (which are feasible before
ision algorithm.

column checking) should be adjusted again to be valid as follows:
* Step7.3.1. Select randomly an invalid row k∗.
* Step7.3.2. Firstly, consider whether there are some checked

members in Ck∗ have needed residual capabilities. If members
in Ck∗ has needed capabilities, let them contribute their residual
resources to Ck∗ . Here we first consider agents that have been
checked previously in Ck∗ to decrease the times that bit “0” in
row k∗ is reset to “1”, because the more bits “1” is in row k∗, the
more communication cost Ck∗ will have and the lower income Ck∗
will get. Moreover, if we neglect those checked agents’ residual
capabilities, it is possible that even if all bits “0” in row k∗ have
been reset to “1”, but Ck∗ still can not perform tk∗ , especially when
the sum of all agents’ capabilities is much closer to the sum of all
tasks’ required capabilities.

* Step7.3.3. If Ck∗ is still invalid, select randomly a column i∗

in row k∗, satisfying �k∗i∗ = 0 and having needed capabilities, set
�k∗i∗ ← 1, Ck∗ ← Ck∗ + {ai∗ }, repeat this step until Ck∗ can perform
tk∗ .

* Step7.3.4. If there is no any infeasible row, goto Step3; Other-
wise, goto Step7.2.1.

To illustrate how the proposed algorithm works, Fig. 3 shows
an example for revising invalid encodings. As shown in the figure,
every agent is randomly selected to join coalitions freely. Note that
at a column which has resource conflicts, a row chosen stochas-
tically is sacrificed to ensure that other corresponding tasks can
be performed, and at the same time, the sacrificed row (or coali-
tion) is compensated for the loss of capabilities by other available
agents and can still perform its given task. Moreover, every agent’s
real contribution to its tasks is always lower or at most equal to its
original capabilities, and this can insure any encoding against any
7. Computational complexity

The proposed revision algorithm for resolving possible resource
conflicts has the following property:
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Fig. 3. The revision process of an invalid

heorem 1. Any given invalid encoding can be revised into a valid
ne based on the proposed algorithm.

roof. It is easily known that all infeasible rows can be adjusted
nto valid rows on the basis of Eq. (3), so here we just need to prove
ll columns can be revised to be feasible, namely, there is no any
esource conflict at any column based on the proposed algorithm.

We will argue by induction. First, this result is trivial for n = 1, it

ust says that if for every j = 1, 2, . . ., r, b1
j
≥

∑
tk ∈ T

dk
j
, then any invalid

ncoding can be revised into a valid one. Since there is only one

olumn in an encoding and B1 ≥
∑

k

Dk, it is hard to argue with

hat.

Inductive step. Suppose for some integer n = q≥1, all q columns

an be revised to be feasible. When n = q + 1, we know that q columns
an be checked and adjusted without any resource conflict from
he induction hypothesis. Thus there is only one column left to
e checked. Let’s say the column is i∗. If column i∗ has no any bit
ing for the case of 4 agents and 3 tasks.

“1” or
∑

k∧�ki∗=1

Lki∗ ≤ Bi∗ , ai∗ has great capabilities and can satisfy

several coalitions at the same time, therefore column i∗ is feasi-
ble. If

∑
k∧�ki∗=1

Lki∗ > Bi∗ , ai∗ has no enough capabilities and possible

resource conflicts take place, then some rows will be sacrificed to
ensure other tasks can be performed. At the same time, according
to constraint (3) each sacrificed coalition can be compensated for
the loss of capabilities by other agents (members in the coalition
or new available agents), which has been shown at Step7 in Sec-
tion 6. Finally, column i∗ can be adjusted to be valid and all q + 1
columns can be revised without any resource conflict. Hence the
result follows by induction. �

Now, the efficiency of the improved algorithm can be judged

from computations as follows:

• In Step1, we need to check each dimension in each row, and when
checking a row, we must travel all agents to calculate its coalition
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Table 1
The baseline settings of all experiments.

Number of agents 30
Number of tasks 10
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Table 2
The average total income for different number of agents.

Number of agents The proposed algorithm Lin and Hu’s

15 6546 5463
16 6544 5286
17 6546 5149
18 6550 4988
19 6553 4782
20 6549 4585
21 6546 4351
22 6547 4147
23 6555 3992
24 6554 3732
25 6552 3455
26 6549 3239
27 6552 2937

of the solving coalition for t9, searched by Lin and Hu’s algorithm,
becomes much large, resulting in many communication costs and
decreasing its total income. Especially, when there are 14 and more
tasks, the income of Lin and Hu’s algorithm is always negative.

Table 3
The average number of discarded encodings for different number of agents.

Number of agents The proposed algorithm Lin and Hu’s

15 0 2333
16 0 2073
17 0 1762
18 0 1443
19 0 1406
20 0 1306
21 0 1156
22 0 988
23 0 557
24 0 501
25 0 499
Number of capabilities 2
Communication costs RAND(1, 5)
Population size 25
Number of iterations 500

capability, so the complexity of Step1 is O(m× n× r).
Similarly, it can be easily seen that the complexity of Step2 is
O(m× n).
Specifically, from Step3 to Step7, we need to check each column
to solve possible resource conflicts. At worst, a column may have
m bits “1” and only hold at most a bit “1” after revising. First,
we need to travel (n−1) agents to calculate Lki for each bit “1”.
Secondly, when a bit “1” is reset to “0”, we may need to travel at
most (n−1) agents to ensure the sacrificed coalition is still valid.
So the complexity of checking on column is O(n×m× n× r) =
O(n2 ×m× r).

Therefore, the complexity of the improved algorithm for revis-
ng invalid encodings is O(n2 ×m× r), which is of polynomial
omplexity.

. Performance evaluation

Having calculated the computational complexity, we now
resent empirical results against Lin and Hu’s algorithm. Given dif-
erent numbers of agents and tasks, we test the performance of
wo algorithms based on the same simulation platform, namely,
iscrete particle swarm optimization [11] with different parame-
er settings. The baseline settings of all experiments are shown in

able 1, where
30∑
i=1

Bi is far more than
10∑

k=1

Dk, but
15∑
i=1

Bi is very close

o
10∑

k=1

Dk.

Each algorithm is run for 50 independent trials and empirical
esults are estimated based on the following metrics:

Variable number of agents.
Variable number of tasks.
Variable number of capabilities.
Different settings of communication costs.
Different parameter settings.

.1. Variable number of agents

efinition 6. Average total income: the average result of the best
olutions over 50 runs.

Given different number of agents, Table 2 shows the average
otal income and Table 3 describes the average number of discarded
ncodings.

As can be seen, the proposed algorithm obtains significantly
ore payoff, especially when the number of agents becomes big-

er. The reason for this is that the proposed algorithm allows agents
o compete against each other freely for given tasks, and thus we
an select better teams with lower communication costs. In con-

rast, when the number of agents increases, the total income of Lin’s
nd Hu’s algorithm decreases significantly, despite fewer discarded
ncodings. This is because the size of every coalition searched by
in and Hu’s algorithm becomes much large (e.g. each coalition has
mass of members, especially when a1 represents a huge coali-
28 6556 2715
29 6554 2453
30 6556 2242

tion), while a mass of members will result in a larger amount of
communication costs and thus decrease a coalition’s total income
significantly.

From Table 3 we know that the proposed algorithm does not dis-
card any encoding, namely, it repairs every invalid encoding into
a valid one. In contrast, Lin and Hu’s algorithm does discard more
and more invalid encodings when the number of agents becomes
smaller. This is because the total resource of all agents is more and
more close to the total required resource of all tasks, and the pos-
sible resource conflicts take place more and more often. Therefore,
a large amount of invalid encodings, which cannot be repaired by
Lin and Hu’s algorithm, have to be discarded.

8.2. Variable number of tasks

Given different number of tasks, Table 4 shows the average total
income and Table 5 describes the average number of discarded
encodings.

As can be seen, at first, the total income of the proposed algo-
rithm and Lin and Hu’s algorithm both become more and more
when the number of tasks becomes bigger. Moreover, the differ-
ence between the proposed algorithm and Lin and Hu’s algorithm
is not too big, when the number of tasks is no more than 8. How-
ever, the total income of Lin and Hu’s algorithm starts to decrease
significantly when there are 9 or more tasks. This is because the size
26 0 385
27 0 228
28 0 158
29 0 137
30 0 132
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Table 4
The average total income for different number of tasks.

Number of tasks The proposed algorithm Lin and Hu’s

5 4171 3194
6 4650 3408
7 5132 3289
8 5608 3174
9 6089 2714

10 6555 2227
11 7048 1816
12 7527 1099
13 8017 510
14 8506 −95
15 8977 −991
16 9442 −1845
17 9919 −2580
18 10,403 −3321
19 10,875 −4205
20 11,356 −4810

Table 5
The average number of discarded encodings for different number of tasks.

Number of tasks The proposed algorithm Lin and Hu’s

5 0 163
6 0 142
7 0 131
8 0 129
9 0 129

10 0 134
11 0 137
12 0 150
13 0 205
14 0 261
15 0 348
16 0 492

b
c
c
m
a

8

a
d

m
b
m

T
T

Table 7
The average number of discarded encodings for different number of capabilities.

Number of capabilities The proposed algorithm Lin and Hu’s

1 0 131
2 0 132
3 0 133
4 0 132
5 0 134
6 0 135
7 0 140
8 0 129
9 0 139

10 0 134

Table 8
The average total income for different communication costs.

Communication costs The proposed algorithm Lin and Hu’s

0 6605 6605
RAND(1, 3) 6568 3690
RAND(4, 6) 6508 −751
RAND(7, 9) 6455 −5019
RAND(10, 12) 6393 −9006
RAND(13, 15) 6338 −13,883
17 0 674
18 0 1145
19 0 1533
20 0 1921

As mentioned earlier, when the the number of tasks becomes
igger, the total required resource of all tasks is more and more
lose to the total resource of all agents, and the possible resource
onflicts take place more and more often. Therefore, in Table 5,
ore and more invalid encodings are discarded by Lin and Hu’s

lgorithm.

.3. Variable number of capabilities

Given different number of capabilities, Table 6 shows the aver-
ge total income and Table 7 describes the average number of
iscarded encodings.
As can be seen, the income of the proposed algorithm is much
ore than Lin and Hu’s when the number of capabilities becomes

igger. This is because when the number of capabilities increases,
ore and more extra capability costs are produced, and at the same

able 6
he average total income for different number of capabilities.

Number of capabilities The proposed algorithm Lin and Hu’s

1 6794 3016
2 6554 2131
3 6369 2023
4 6159 1768
5 5977 1574
6 5772 1384
7 5583 1194
8 5370 998
9 5184 817

10 4974 641
RAND(16, 18) 6281 −18,203
RAND(19, 21) 6212 −22,045

time, the size of coalitions searched by Lin and Hu’s algorithm
becomes more and more large, which will bring more and more
communication costs.

As shown in Table 7, the number of discarded encodings does
have nothing to do with the number of capabilities. Since it is easily
known whether resource conflicts will take place mainly depends
on whether the total capabilities of all agents are very close to the
total required capabilities of all tasks, and is irrelevant to there are
how many dimensional capabilities.

8.4. Different settings of communication costs

Given different settings of communication costs, Table 8 shows
the average total income and Table 9 describes the average number
of discarded encodings.

As can be seen, the communication costs have a small impact on
the proposed algorithm. In contrast, Lin and Hu’s algorithm is very
sensitive to the communication costs. When the communication
costs are more and more large, the income of Lin and Hu’s algorithm
becomes more and more little, and even has a negative growth. The
reason for this is that the size of each coalition searched by Lin and
Hu’s algorithm is far more large than the proposed algorithm and
thus produces many extra costs.

As shown in Table 9, the number of discarded encodings does

have nothing to do with the communication costs.

Table 9
The average number of discarded encodings for different communication costs.

Communication costs The proposed algorithm Lin and Hu’s

0 0 42
RAND(1, 3) 0 129
RAND(4, 6) 0 133
RAND(7, 9) 0 132
RAND(10, 12) 0 130
RAND(13, 15) 0 126
RAND(16, 18) 0 127
RAND(19, 21) 0 141
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Table 10
The average total income for different population size.

Population size The proposed algorithm Lin and Hu’s

1 6521 1007
5 6545 1590

10 6551 1894
15 6552 2052
20 6556 2090
25 6554 2237
30 6558 2295
35 6555 2237
40 6557 2397
45 6558 2318
50 6561 2399

Table 11
The average number of discarded encodings for different population size.

Population size The proposed algorithm Lin and Hu’s

1 0 4
5 0 23

10 0 52
15 0 70
20 0 101
25 0 133
30 0 160
35 0 183

8

i
e

a
d

a
u
s
e
t
e
i
p
o
a
t

T
T

Table 13
The average number of discarded encodings for different number of iterations.

Iteration number The proposed algorithm Lin and Hu’s

1 0 0
100 0 22
200 0 51
300 0 73
400 0 104
500 0 126
600 0 159
700 0 185
800 0 218
900 0 241

1000 0 278
40 0 218
45 0 232
50 0 269

.5. Different parameter settings

Given different population size, Table 10 shows the average total
ncome and Table 11 describes the average number of discarded
ncodings.

Given different number of iterations, Table 12 shows the aver-
ge total income and Table 13 describes the average number of
iscarded encodings.

As shown in the tables, the difference between the proposed
lgorithm and Lin and Hu’s algorithm is very big when the pop-
lation size or the iteration number is very small. Obviously, the
olutions of the proposed algorithm converge quickly in the very
arly stage of the search algorithm (within less than 300 itera-
ions), and the proposed algorithm can easily get a better solution
specially when the population size is between 20 and 30 and the
teration number is between 500 and 1000. This is because the

roposed algorithm can revise any invalid encoding into a valid
ne without any resource conflict, that is any particle at any iter-
tion represents a feasible solution, and this can help the system
o explore solution space and quickly find a good solution which

able 12
he average total income for different number of iterations.

Iteration number The proposed algorithm Lin and Hu’s

1 6384 −1176
100 6517 1603
200 6537 1844
300 6544 1930
400 6551 2179
500 6557 2206
600 6559 2238
700 6558 2329
800 6563 2356
900 6561 2420

1000 6565 2448
1500 6566 2498
2000 6569 2544
2500 6571 2678
3000 6571 2764
1500 0 418
2000 0 602
2500 0 766
3000 0 918

is very near the optimum. Therefore, the solution of the proposed
algorithm does not improve significantly from iteration 1 and 3000,
that is the proposed algorithm is not sensitive to the parameter
settings and can easily get a good solution with bad and finite con-
ditions, which establishes a good foundation for practical project
applications.

In contrast, Lin and Hu’s algorithm evolves very slowly for dis-
carding many invalid encodings in Tables 11 and 13. Therefore,
it needs more particles or more iteration number to search for a
good solution, which results in a large amount of wasting time and
memory.

9. Conclusions and future work

In this paper, we have developed a novel algorithm for revis-
ing invalid encodings in concurrent formation of overlapping
coalitions. We have evaluated the performance of the improved
algorithm against Lin and Hu’s. This comparison showed that the
proposed algorithm is significantly more effective, since the pro-
posed algorithm will not discard any invalid encoding and can
revise any invalid encoding into a valid one without any resource
conflict.

For future work, we will concentrate on the encoding revision
algorithm in ant colony optimization [19] with binary coding.
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